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Abstract

This paper proposes a simple test of Granger (1969) non causality hypothesis in het-
erogeneous panel data models with fixed coefficients. It proposes a statistic of test based
on averaging standard individual Wald statistics of Granger non causality tests. First, this
statistic is shown to converge sequentially to a standard normal distribution with T tends
to infinity, followed by N . Second, for a fixed T sample the semi-asymptotic distribution of
the average statistic is characterized. In this case, individual Wald statistics do not have
a standard distribution. However, under very general setting, we prove that individual
Wald statistics are independently distributed with finite second order moments as soon as
T > 5+ 2K, where K denotes the number of linear restrictions. For a fixed T sample, the
Lyapunov central limit theorem is then sufficient to get the semi asymptotic distribution
when N tends to infinity. The two first moments of this normal distribution correspond to
empirical mean of the corresponding theoretical moments of the individual Wald statistics.
The issue is then to propose an evaluation of the two first moments of standard Wald
statistics for small T sample. In this paper we propose a general approximation based on
the exact moments of the ratio of quadratic forms in normal variables derived from the
Magnus (1986) theorem. For a fixed T sample, we propose simple approximations of the
mean and the variance of the Wald statistic. Monte Carlo experiments show that these
formulas provide an excellent approximation. Given these approximations, we propose an
approximated standardized average Wald statistic to test the HNC hypothesis in short T
sample. Finally, approximated critical values are proposed for finite N and T sample and
compared to simulated critical values in some experiments.

• Keywords : Granger Causality, Panel data, Wald Test.
• J.E.L Classification : C23, C11

∗LEO, University of Orléans. email: christophe.hurlin@univ-orleans.fr. A substantial part of the work for
this paper was undertaken in the Department of Economics of the University Paris IX Dauphine, EURIsCO and
in CEPREMAP.

†An earlier version of this paper was presented at the EC2 meeting ”Causality and Exogeneity in Econo-
metrics”, CORE Louvain La Neuve, December 2001. I am grateful for comments and advices from Anindya
Banerjee, Pierre-Yves Hénin, Valentin Patilea, Gilbert Colletaz and the participants of the econometric seminars
of the University Paris I and the University of Geneva.

1



1 Introduction

The aim of this paper is to propose a simple Granger (1969) non causality test in heterogeneous
panel data models with fixed coefficients. In the framework of a linear autoregressive data
generating process, the extension of standard causality tests for panel data implies to test cross
sectional linear restrictions on the coefficients of the model. As usually, the use of cross-sectional
information may extend the information set on the causality from a given variable to another.
Indeed, in many economic problems it is highly probable that if a causal relationship exists for a
country or an individual, it exists also for some other countries or individuals. In this case, the
causality can be tested with more efficiency in a panel context with NT observations. However,
the use of the cross-sectional information implies to take into account the heterogeneity across
individuals in the definition of the causal relationship. As discussed in Granger (2003), the
usual causality test in panel asks ”if some variable, say Xt causes another variable, say Yt,
everywhere in the panel [..]. This is rather a strong null hypothesis.” Then, we propose here
a simple Granger non causality test for heterogeneous panel data models. This test allows to
take into account both dimensions of the heterogeneity in this context: the heterogeneity of the
causal relationships and the heterogeneity of the data generating process (DGP ).

Let us consider the standard implication of the Granger causality definition1. For each
individual, we say that the variable x is causing y if we are better able to predict y using all
available information than if the information apart from x had been used (Granger 1969). If x
and y are observed on N individuals, the issue consists in determining the optimal information
set used to forecast y. Several solutions could be adopted. The most general is to test the
causality from the variable x observed on the ith individual to the variable y observed for the
jth individual, with j = i or j 9= i. The second solution, is more restrictive and is directly derived
from the time series analysis. It implies to test causal relationship for a given individual. The
cross sectional information is then only used to improve the specification of the model and the
power of tests as in Holtz-Eakin, Newey and Rosen (1988). The baseline idea is to assume
that there exists a minimal statistical representation, which is common to x and y at least for
a subgroup of individuals. In this paper we use such a model. Then, causality tests could be
implemented and considered as a natural extension of the standard time series tests in the cross
sectional dimension.

However, one of the main specific stakes of panel data models is to specify the heterogeneity
between individuals. In this context, the heterogeneity has two main dimensions as discussed in
Hurlin and Venet (2001). We propose to distinguish between the heterogeneity of the DGP and
the heterogeneity of the causal relationships from x to y. Indeed, theDGP may be different from
an individual to another, whereas there exists a causal relationship from x to y for all individuals.
More generally, in a p order linear vectorial autoregressive model, we define four kinds of causal
relationships. The first, denoted Homogenous Non Causality (HNC) hypothesis, implies that
there does not exist any individual causality relationships from x to y. The symmetric case
is the Homogenous Causality (HC) hypothesis, which occurs when there exists N causality
relationships, and when the individual predictors of y, obtained conditionally to the past values

1The precise Granger causality definition is based on the ”two precepts that the cause preceded the effect and
the causal series had information about the effect that was not contained in any other series according to the
conditional distributions” (Granger 2003). The fact that the cause produces a superior forecasts of the effect
is just an implication of these statements. However, it does provide suitable post sample tests as discussed in
Granger (1980).

2



of y and x are identical. The dynamics of y is then totally identical for all the individuals of
the sample. The two last cases correspond to heterogeneous process. Under the HEterogenous
Causality (HEC) hypothesis, we assume that there exists N causality relationships as in the
HC case, but the dynamics of y is heterogenous. The heterogeneity does not affect the causality
result. Finally, under the HEterogenous Non Causality (HENC) hypothesis, we assume that
there exists a subgroup of individuals for which there is a causal relationship from x to y.
Symmetrically, there is at least one and at the most N − 1 non causal relationships in the
model. That is why, in this case, the heterogeneity deals with the causality from x to y.
To sum it up, in the HNC hypothesis, there does not exist any individual causality from

x to y. On the contrary, in the HC and HEC cases, there is a causality relationships for each
individual of the sample. In the HC case, the DGP is homogenous, whereas it is not the case
in the HEC hypothesis. Finally in the HENC hypothesis, there is an heterogeneity of the
causality relationships since there is a subgroup of N1 units for which the variable x does not
cause y.

In this paper, we propose a simple test of the Homogenous Non Causality (HNC) hypothesis.
Under the null hypothesis, there is no causal relationship for all the units of the panel. However,
we do not test this hypothesis against the HC hypothesis as Holtz-Eakin, Newey and Rosen
(1988). We specify the alternative as the HENC hypothesis. There is two subgroups of units:
one with causal relationships from x to y, but not necessarily with the same DGP, and an
another subgroup where there is no causal relationships from x to y. For that, our test is lead
in an heterogenous panel data model with fixed coefficients. Under the null or the alternative,
the unconstrained parameters may be different from individual to another. Then, whatever the
result on the existence of causal relationships, we assume that the dynamic of the individual
variables may be heterogeneous.

As in the literature on unit root tests in heterogeneous panels, and particularly in Im,
Pesaran and Shin (2002), this paper proposes a statistic of test based on averaging standard
individual Wald statistics of Granger non causality tests. First, this statistic is shown to
converge sequentially in distribution to a standard normal variate when the time dimension T
tends to infinity, followed by the individual dimension N. Second, for a fixed T sample the semi-
asymptotic distribution of the average statistic is characterized. In this case, individual Wald
statistics do not have a standard chi-squared distribution. However, under very general setting,
it is shown that individual Wald statistics are independently distributed with finite second order
moments as soon as T > 5+2K, where K denotes the number of linear restrictions. For a fixed
T , the Lyapunov central limit theorem is sufficient to get the distribution of the standardized
average Wald statistic when N tends to infinity. The two first moments of this normal semi-
asymptotic distribution correspond to empirical mean of the corresponding theoretical moments
of the individual Wald statistics.
The issue is then to propose an evaluation of the two first moments of standard Wald sta-

tistics for small T sample. The first solution consists in using bootstrap simulations. However,
in this paper we propose an approximation of these moments based on the exact moments of
the ratio of quadratic forms in normal variables derived from the Magnus (1986) theorem for
a fixed T sample, with T > 5 + 2K. Monte Carlo experiments show that these formulas pro-
vide an excellent approximation to the true moments. Given these approximations, we propose
an approximated standardized average Wald statistic to test the HNC hypothesis in short T
sample. Finally, approximated critical values are proposed for finite T and N sample.
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The paper is organized as follows. Section 2 is devoted to the definition of the Granger
causality test in heterogenous panel data models. Section 3 sets out the asymptotic distributions
of the average Wald statistic. Section 4 derives the semi-asymptotic distribution for fixed T
sample and section 5 proposes some results of Monte Carlo experiments. Section 6 extends the
results to a fixed N sample and the last section provides some concluding remarks.

2 A non causality test in heterogenous panel data models

Let us consider two covariance stationary variables, denoted x and y, observed on T periods
and on N individuals. For each individual i = 1, .., N, at time t = 1, .., T, we consider the
following linear model:

yi,t = αi +
K[
k=1

γ
(k)
i yi,t−k +

K[
k=1

β
(k)
i xi,t−k + εi,t (1)

with K ∈ N∗ and βi =
�
β
(1)
i , ...,β

(K)
i

�3
. For simplicity, individual effects αi are supposed to

be fixed. Initial conditions (yi,−K , ..., yi,0) and (xi,−K , ..., xi,0) of both individual processes yi,t
and xi,t are given and observable. We assume that lag orders K are identical for all cross-
section units of the panel and the panel is balanced. In a first part, we allow for autoregressive
parameters γ(k)i and regression coefficients slopes β(k)i to differ across groups. However, contrary
to Weinhold (1996) and Nair-Reichert and Weinhold (2001), parameters γ

(k)
i and β

(k)
i are

constant. It is important to note that our model is not a random coefficient model as in Swamy
(1970): it is a fixed coefficients model with fixed individual effects. We make the following
assumptions.

Assumption (A1) For each cross section unit i = 1, .., N, individual residuals εi,t , ∀t = 1, .., T
are independently and normally distributed with E (εi,t) = 0 and finite heterogeneous
variances E

�
ε2i,t
�
= σ2ε,i.

Assumption (A2) Individual residuals εi = (εi,1, .., εi,T ) 3, are independently distributed across
groups. Consequently E (εi,tεj,s) = 0, ∀i 9= j and ∀ (t, s) .

Assumption (A3) Both individual variables xi = (xi,1, ..., xi,T )
3 and yi = (yi,1, ..., yi,T )

3
,

are covariance stationary with E
�
y2i,t
�
<∞ , E

�
x2i,t
�
<∞, E (xi,txj,z) , E (yi,tyj,z) and

E (yi,txj,z) are only function of the difference t − z, whereas E (xi,t) and E (yi,t) are
independent of t.

This simple two variables model constitutes the basic framework to study the Granger
causality in a panel data context. As for time series, the standard causality tests consist in
testing linear restrictions on vectors βi. However with a panel data model, one must be very
careful to the issue of heterogeneity between individuals. The first source of heterogeneity is
standard and comes from the presence of individual effects αi. The second source, which is
more crucial, is related to the heterogeneity of the parameters βi. This kind of heterogeneity
directly affects the paradigm of the representative agent and so, the conclusions about causality
relationships. It is well known that the estimates of autoregressive parameters βi get under
the wrong hypothesis βi = βj , ∀ (i, j) are biased (see Pesaran and Smith 1995 for an AR(1)
process). Then, if we impose the homogeneity of coefficients βi, the statistics of causality tests
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can lead to a fallacious inference. Intuitively, the estimate eβ obtained in an homogeneous model
will converge to a value close to the average of the true coefficients βi, and that if this mean is
itself close to zero, we risk to accept at wrong the hypothesis of no causality.
Beyond these statistical stakes, it is evident that an homogeneous specification of the relation

between the variables x and y does not allow to give some interpretation of the relations of
causality as soon as at least one individual of the sample has an economic behavior different
from that of the others. For example, let us assume that there exists a relation of causality for
a set of N countries, for which vectors βi are strictly identical. If we introduce into the sample,
a set of N1 countries for which, on the contrary, there is no relation of causality, what are the
conclusions? Whatever the value of the ratio N/N1 is, the test of the causality hypothesis is
nonsensical.

Given these observations, we now propose to test the Homogenous Non Causality (HNC)
hypothesis. Under the alternative we allow that there exists a subgroup of individuals with no
causality relations and a subgroup of individuals for which the variable x Granger causes y.
The null hypothesis of HNC is defined as:

H0 : βi = 0 ∀i = 1, ..N (2)

with βi =
�
β
(1)
i , ...,β

(K)
i

�3
. Under the alternative, we allow for βi to differ across groups.

We also allow for some, but not all, of the individual vectors to be equal to 0 (non causality
assumption). We assume that under H1, there are N1 < N individual processes with no
causality from x to y. Then, this test is not a test of the non causality assumption against the
causality from x to y for all the individuals, as in Holtz-Eakin, Newey and Rosen (1988). It is
more general, since we can observe non causality for some units under the alternative:

H1 : βi = 0 ∀i = 1, .., N1 (3)

βi 9= 0 ∀i = N1 + 1,N1 + 2, .., N
where N1 is unknown but satisfies the condition 0 ≤ N1/N < 1. The fraction N1/N is neces-
sarily inferior to one, since if N1 = N there is no causality for all the individual of the panel,
and then we get the null hypothesis HNC. In the opposite case N1 = 0, there is causality for
all the individual of the sample. The structure of this test is similar to the unit root test in
heterogenous panels proposed by Im, Pesaran and Shin (2002). In our context, if the null is
accepted the variable x does not Granger cause the variable y for all the units of the panel.
On the contrary, let us assume that the HNC is rejected and if N1 = 0, we have seen that x
Granger causes y for all the individuals of the panel : in this case we get an homogenous result
as far as causality is concerned. The DGP may be not homogenous, but the causality relations
are observed for all individuals. On the contrary, if N1 > 0, then the causality relationships is
heterogeneous : the DGP and the causality relations are different according the individuals of
the sample.

In this context, we propose to use the average of individual Wald statistics associated to the
test of the non causality hypothesis for units i = 1, .., N .

Definition The average statistic WHnc
N,T associated to the null Homogenous Non Causality

(HNC) hypothesis is defined as:

WHnc
N,T =

1

N

N[
i=1

Wi,T (4)
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where Wi,T denotes the individual Wald statistics for the ith cross section unit associated
to the individual test H0 : βi = 0.

In order to express the general form of this statistic, we stack the T periods observations
for the ith individual’s characteristics into T elements columns as:

y
(k)
i

(T,1)

=


yi,1−k
.
.
yi,T−k

 x
(k)
i

(T,1)

=


xi,1−k
.
.
xi,T−k

 εi
(T,1)

=


εi,1
.
.
εi,T


and we define two (T,K) matrices :

Yi =
k
y
(1)
i : y

(2)
i : ... : y

(K)
i

l
Xi =

k
x
(1)
i : x

(2)
i : ... : x

(K)
i

l
Let us denote Zi the (T, 2K + 1) matrix Zi = [e : Yi : Xi] , where e denotes a (T, 1) unit vector,
and θi =

�
αi γ

3
i β
3
i

�3
the vector of parameters of model. The HNC hypothesis test can be

expressed as Rθi = 0 where R is a (K, 2K + 1) matrix with R = [0 : IK ] . The Wald statistic
Wi,T associated to the individual test H0 : βi = 0 is defined for each i = 1, .., N as:

Wi,T = eθ3iR3 keσ2iR (Z3iZi)−1R3l−1Reθi = eθ3iR3 kR (Z3iZi)−1R3l−1Reθieε3ieεi/ (T − 2K − 1)
where eθi is the estimate of parameter θi get under the alternative hypothesis, eσ2i the estimate
of the variance of residuals. For a small T sample, the corresponding unbiased estimator2 may
be expressed as eσ2i = eε3ieεi/ (T − 2K − 1) . We propose here to express this Wald statistic as a
ratio of quadratic forms in normal variables corresponding to the true population of residual
(cf. appendix A). This expression is:

Wi,T = (T − 2K − 1)
�hε3iΦihεihε3iMihεi

�
i = 1, .., N (5)

where the (T, 1) vector hεi = εi/σε,i is distributed according N (0, IT ) under assumption A1.
The matrix Φi and Mi are positive semi definite, symmetric and idempotent (T, T ) matrix.

Φi = Zi (Z
3
iZi)

−1
R3
k
R (Z3iZi)

−1
R3
l−1

R (Z3iZi)
−1
Z3i (6)

Mi = IT − Zi (Z3iZi)−1 Z3i (7)

where IT is the identity matrix of size T. The matrixMi corresponds to the standard projection
matrix of the linear regression analysis.

The issue is now to determine the distribution of the average statistic WHnc
N,T under the null

hypothesis of Homogenous Non Causality. For that, we first consider the asymptotic case where
T and N tends to infinity, and in second part the case where T is fixed.

2 It is also possible to use the standard formula of the Wald statistic by substituting the term (T − 2K − 1)
by T. However, several software (as Eviews) use this normalisation.
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3 Asymptotic distribution

We propose to derive the asymptotic distribution of the average statistic WHnc
N,T under the null

hypothesis of non causality. For that, we consider the case of a sequential convergence when
T tends to infinity and then N tends to infinity. This sequential convergence result can be
deduced from the standard convergence result of the individual Wald statistic Wi,T in a large
T sample. In a non dynamic model, the normality assumption in A1 would be sufficient to
establish the fact for all T, the Wald statistic has a chi-squared distribution with K degrees of
freedom. But in our dynamic model, this result can only be achieved asymptotically. Let us
consider the expression (5). Given that under A1 the least squares estimate eθi is convergent,
we know that plim ε3iMiεi/ (T − 2K − 1) = σ2ε,i. It implies that:

plim
T→∞

hε3iMihεi
T − 2K − 1 = plim

T→∞
1

σ2ε,i

�
ε3iMiεi

T − 2K − 1
�
= 1

Then, if the statistic Wi,T has a limiting distribution, it is the same distribution of the
statistics that results when the denominator is replaced by its limiting value, that is to say 1.
Thus, Wi,T has the same limiting distribution as hε3iΦihεi. Under assumption A1, the vector hεi is
distributed across a N (0, IT ) . Since Φi is idempotent, the quadratic form hε3iΦihεi is distributed
as a chi-squared with a number of degrees of freedom equal to the rank of Φi. The rank of
the symmetric idempotent matrix Φi is equal to its trace, that is to say K (cf. appendix A).
Then, under the null hypothesis of non causality, each individual Wald statistic converges to a
chi-squared distribution with K degrees of freedom:

Wi,T
d−→

T→∞
χ2 (K) ∀i = 1, .., N (8)

In other words, when T tends to infinity, individual statistics {Wi,T }Ni=1 are identically
distributed. They are also independent since under assumption A2, residual εi and εj for j 9= i
are independent. To sum it up: if T tends to infinity individual Wald statistics Wi,T are i.i.d.
with E (Wi,T ) = K and V (Wi,T ) = 2K. Then, the distribution of the average Wald statistic
WHnc
N,T when T → ∞ first and then N → ∞, can be deduced from a standard Lindberg-Levy

central limit theorem.

Theorem 1 Under assumption A2, the individual Wi,T statistics for i = 1, ..,N are identically
and independently distributed with finite second order moments as T → ∞, and therefore by
Lindberg-Levy central limit theorem under the HNC null hypothesis, the average statisticWHnc

HNC

sequentially converges in distribution.

ZHncN,T =

u
N

2K

�
WHnc
N,T −K

� d−→
T,N→∞

N (0, 1) (9)

with WHnc
N,T = (1/N)

SN
i=1Wi,T , where T,N →∞ denotes the fact that T →∞ first and then

N →∞.

For a large N and T sample, if the realization of the standardized statistic ZHncN,T is superior
in absolute mean to the normal corresponding critical value for a given level of risk, the homo-
geneous non causality (HNC) hypothesis is rejected. This asymptotic result may be useful in
some macro panels. However, it should be extended to the case where T and N tend to infinity
simultaneously.
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4 Fixed T samples and semi-asymptotic distributions

Asymptotically, individual Wald statistics Wi,T for each i = 1, .., N, converge toward an identi-
cal chi-squared distribution. However, this convergence result can not be achieved for any time
dimension T, even if we assume the normality of residuals. The issue is then to show that for
a fixed T dimension, individual Wald statistics have finite second order moments even they do
not have the same distribution and they do not have a standard distribution.

Let us consider the expression (5) of Wi,T under assumption A1: this is a ratio of two
quadratic forms in a standard normal vector. Magnus (1986) gives general conditions which
insure that the expectations of a quadratic form in normal variables exists. Let us consider
the moments E

�
(x3Ax/x3Bx)s

�
, when x is normally distributed vector N

�
0,σ2IT

�
, A is a

symmetric (T, T ) matrix and B a positive semi definite (T, T ) matrix of rank r ≥ 1. Let us
denote Q a (T, T − r) matrix of full column rank T −r such that BQ = 0. If r ≤ T −1, Magnus
(1986)’s theorem identifies three conditions:

(i) If AQ = 0, then E
�
(x3Ax/x3Bx)s

�
exists for all s ≥ 0.

(ii) If AQ 9= 0 and Q3AQ = 0, then E �(x3Ax/x3Bx)s� exists for 0 ≤ s < r and does not exist
for s ≥ r.

(iii) IfQ3AQ 9= 0, then E �(x3Ax/x3Bx)s� exists for 0 ≤ s < r/2 and does not exist for s ≥ r/2.
These general conditions are done in the case where matrices A and B are deterministic. In

our case, the corresponding matrices Mi and Φi are stochastic, even we assume that exogenous
variables Xi are deterministic. However, given a fixed T sample, we propose here to apply these
conditions to the corresponding realisation denoted mi and φi. First, in our case the rank of
the symmetric idempotent matrix mi is equal to T − 2K − 1 (appendix A). Second, since the
matrixmi is the projection matrix associated to the realization zi of Zi, we have by construction
mizi = 0, where zi of full column rank 2K + 1, since T−rank(mi) = 2K + 1 Then, for a given
realisation φi by construction, the product φizi is different from zero since

φizi = zi (z
3
izi)
−1
R3
k
R (z3izi)

−1
R3
l−1

R 9= 0

Besides, the product z3iφizi is also different from zero, since

z3iφizi = R
3
k
R (z3izi)

−1
R3
l−1

R 9= 0

Then, the Magnus’ theorem allows us to establish that E
��hε3iφihεi� / �hε3imihεi��s exists as

soon as 0 ≤ s < rank(mi) /2. We assume that this condition is also satisfied for Wi,T :

E [(Wi,T )
s] = (T − 2K − 1)sE

%�hε3iΦihεihε3iMihεi
�s&

exists if 0 ≤ s < T − 2K − 1
2

In particular, given the realizations of Φi andMi, we can identify the condition on T which
assures that second order moments (s = 2) of Wi,T exists.

Proposition 2 For a fixed time dimension T ∈ N, the second order moments of the individual
Wald statistic Wi,T associated to the test H0,i : βi = 0, exist if and only if:

T > 5 + 2K (10)
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Hence for a small T , individual Wald statistics Wi,T are not necessarily identically distrib-
uted since matrices Φi and Mi are different from an individual to another. Besides, they do
not have standard distribution as in previous section. However, the condition which insures the
existence of second order moments are the same for all units. The second order moments of
Wi,T exist as soon as T > 5 + 2K or equivalently T ≥ 6 + 2K.

For a fixed T sample, the statistic of non causality test WHnc
N,T is the average of non iden-

tically distributed variables Wi,T , but with finite second order moments under the condition
of proposition 2. Under assumption A2, residual εi and εj for j 9= i are independent. Con-
sequently, individual Wald Wi,T for i = 1, .., N are also independent. Then, the distribution
of the non causality test statistic WHnc

N,T can be derived according the Lyapunov central limit
theorem.

Theorem 3 Under assumption A2, if T > 5 + 2K the individual Wi,T statistics ∀i = 1, .., N
are independently but not identically distributed with finite second order moments, and therefore
by Lyapunov central limit theorem under the HNC null hypothesis, the average statistic W b

HNC

converges. If

lim
N→∞

#
N[
i=1

V ar (Wi,T )

$− 1
2
#

N[
i=1

E
k
|Wi,T −E (Wi,T )|3

l$ 1
3

= 0

the standardized statistic ZHncN,T converges in distribution:

ZHncN,T =

√
N
k
WHnc
N,T −N−1

SN
i=1E (Wi,T )

l
t
N−1

SN
i=1 V ar (Wi,T )

d−→
N→∞

N (0, 1) (11)

with WHnc
N,T = (1/N)

SN
i=1Wi,T , where E (Wi,T ) and V ar (Wi,T ) respectively denote the mean

and the variance of the statistic Wi,T defined by equation (5).

The decision of rule is the same as in the asymptotic case: if the realization of the stan-
dardized statistic ZHncN,T is superior in absolute mean to the normal corresponding critical
value for a given level of risk, the homogeneous non causality (HNC) hypothesis is rejected.
For large T, the moments used in theorem (3) are expected to converge to E (Wi,T ) = K

and V ar (Wi,T ) = 2K since individual statistics Wi,T converge in distribution to a chi-squared
distribution with K degrees of freedom. Then, we find the conditions of the theorem 1. How-
ever, these asymptotic moment values could lead to poor test results, when we have small values
of T. The issue is then to evaluate the mean and the variance of the Wald statisticWi,T , whereas
this statistic does not have a standard distribution for a fixed T.

We have seen in the previous section that the two first moments of Wi,T exist, but what
are their values? This point is particularly essential, since if we can not propose a general
approximation of these moments, it will be necessary to compute these moments via stochastic
simulations of the Wald under H0. However, these simulations necessitate to specify an assump-
tion on the parameters γi and αi, but also on the DGP of exogenous variables xi,t. In order to
get more general results, we propose here an approximation of E (Wi,T ) and V ar (Wi,T ) based
on the results of Magnus (1986) theorem.
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Let us consider the expression of the Wald Wi,T as a ratio of two quadratic forms in a
standard normal vector under assumption A1:

Wi,T = (T − 2K − 1)
�hε3iΦihεihε3iMihεi

�
(12)

where the (T, 1) vector hεi = εi/σε,i is distributed according N (0, IT ) where matrices Φi andMi

are idempotent and symmetric (and consequently positive semi-definite). For a given T sample,
let us denote respectively φi and mi, the realizations of matrices Φi andMi.We propose here to
apply the Magnus (1986) theorem to the quadratic forms in a standard normal vector defined
as: iWi,T = (T − 2K − 1)

� hε3iφihεihε3imihεi
�

(13)

where matrices φi and mi are idempotent and symmetric (and consequently positive semi-
definite).

Theorem 4 (Magnus 1986) Let hεi be a normal distributed vector with E (hεi) = 0 and E �hεihε3i� =
IT . Let Pi be an orthogonal (T, T ) matrix and Λi a diagonal (T, T ) matrix such that

P 3imiPi = Λi P 3iPi = IT (14)

Then, we have, provided the expectation exists for s = 1, 2, 3.. :

E

%� hε3iφihεihε3imihεi
�s&

=
1

(s− 1)!
[
v

γs (v)×
] ∞
0

ts−1 |∆i|
s\
j=1

[trace (Ri)]
nj

 dt (15)

where the summation is over all (s, 1) vectors v = (n1, .., ns) whose elements nj are nonnegative
integers satisfying

Ss
j=1 jnj = s

γs (v) = s! 2
s

s\
j=1

[nj ! (2j)
nj ]
−1 (16)

and ∆i is a diagonal positive definite (T, T ) matrix and Ri a symmetric (T, T ) matrix given by:

∆i = (IT + 2 tΛi)
−1/2 Ri = ∆i P

3
iφiPi∆i (17)

In our case, we are interested by the two first moments. For the first order moment (s = 1),
there is only one scalar v = n1 which is equal to one. Then, the quantity γ1 (v) is equal to one.
For the second order moment (s = 2), there are two vectors v = (n1, n2) which are respectively
defined by v1 = (0, 1) and v2 = (2, 0) . Consequently γ2 (v1) = 2 and γ2 (v2) = 1. Given these
results, we can compute the exact two corresponding moments of the statistic iWi,T as:

E
�iWi,T

�
= (T − 2K − 1) ×

] ∞
0

|∆i| trace (Ri) dt (18)

E

��iWi,T

�2�
= (T − 2K − 1)2 ×

�
2

] ∞
0

t |∆i| trace (Ri) dt+
] ∞
0

t |∆i| [trace (Ri)]2 dt
�
(19)

where matrices ∆i and Ri are defined in theorem (4). Both quantities |∆i| and trace (Ri) can
be computed analytically in our model given the properties of these matrices. Since Λi is issued
from the orthogonal decomposition of the idempotent matrix mi, with rank(mi) = T − 2K − 1

10



(cf. appendix A), this matrix is a zero except the first block which is equal to the T − 2K − 1
identity matrix (corresponding to the characteristic roots of mi which are non nul). Then, for
a scalar t ∈ R+, the matrix ∆i = (IT + 2 tΛi)−1/2 can be partitioned as:

∆i
(T,T )

=

 Di (t)
(T−2K−1,T−2K−1)

0
(T−2K−1,2K+1)

0
(2K+1,T−2K−1)

I2K+1
(2K+1,2K+1)


where Ip denotes the identity matrix of size p. The diagonal block Di (t) is defined as Di (t) =

(1 + 2t)
− 1
2 IT−2K−1. Then, the determinant of ∆i can be expressed as:

|∆i| = (1 + 2t)−(
T−2K−1

2 ) (20)

Besides, the trace of the matrix Ri can be computed as follows. Since for any non singular
matrices B and C, the rank of BAC is equal to rank of A, we have here:

rank (Ri) = rank (∆i P 3iφiPi∆i) = rank (P
3
iφiPi)

since the matrix ∆i is non singular. With the same transformation, given the non singularity
of Pi, we get:

rank (Ri) = rank (P 3iφiPi) = rank (φi)

Finally, the rank of the realisation φi is equal to K, the rank of Φi (cf. appendix A).

trace (Ri) = K

Given these results, the two first moments (equations 18 and 19) of the statistic iWi,T based
for a given T sample on realizations φi and mi, can be expressed as:

E
�iWi,T

�
= (T − 2K − 1) ×K ×

] ∞
0

(1 + 2t)−(
T−2K−1

2 ) dt

E

��iWi,T

�2�
= (T − 2K − 1)2 × �2K +K2

�× ] ∞
0

t (1 + 2t)−(
T−2K−1

2 ) dt

Then, we get the following results.

Proposition 5 For a fixed T sample, where T satisfies the condition of proposition (2), given
realizations φi and mi of matrices Φi and Mi (equations 6 and 7), the exact two first moments
of the individual statistics iWi,T , for i = 1, ...,N, defined by equation (13) are respectively:

E
�iWi,T

�
= K × (T − 2K − 1)

(T − 2K − 3) (21)

V ar
�iWi,T

�
= 2K × (T − 2K − 1)2 × (T −K − 3)

(T − 2K − 3)2 × (T − 2K − 5) (22)

as soon as the time dimension T satisfies T ≥ 6 + 2K.

The proof of this proposition is done in appendix B. It is important to verify that for large
T sample, the moments of the individual statistic iWi,T tend to the corresponding moments of
the asymptotic distribution of Wi,T since ∀i = 1, ..., N :

lim
T→∞

E
�iWi,T

�
= K lim

T→∞
V ar

�iWi,T

�
= 2K

11



Both moments correspond to the moments of a F (K,T − 2K − 1). Indeed, in this dynamic
model the F distribution can be used as an approximation of the true distribution of the statistic
Wi,T/K for a small T sample. Then, the use of the Magnus theorem given the realizations φi
and mi to approximate the true moments of the Wald statistic is equivalent to assert that the
true distribution of Wi,T can be approximated by the F distribution.

For a given T ≥ 6 + 2K sample, we propose in this paper to approximate the two first
moments of the individual Wald statistic Wi,T by the two first moments (equation 21 and 22)
of the statistics iWi,T based on the realizations φi and mi of the stochastic matrices Φi andMi.

More precisely, we propose to approximate the two quantities used in theorem 4 for the finite
T distribution of the average statistic WHnc

N,T . If T ≥ 6 + 2K, the following approximations are
supposed to be valid:

N−1
N[
i=1

E (Wi,T ) * N−1
N[
i=1

E
�iWi,T

�
= K × (T − 2K − 1)

(T − 2K − 3)

N−1
N[
i=1

V ar (Wi,T ) * N−1
N[
i=1

V ar
�iWi,T

�
= 2K × (T − 2K − 1)2 × (T −K − 3)

(T − 2K − 3)2 × (T − 2K − 5)

Given these approximations, we propose to compute an approximated standardized statistichZHncN,T for the average Wald average statistic WHnc
N,T of the HNC hypothesis.

hZHncN,T =

√
N
k
WHnc
N,T −E

�iWi,T

�l
u
V ar

�iWi,T

� (23)

After simplifications, the standardized statistic hZHncN,T is defined as:

hZHncN,T =

v
N

2×K × (T − 2K − 5)
(T −K − 3) ×

�
(T − 2K − 3)
(T − 2K − 1)W

Hnc
N,T −K

�
(24)

For a large N sample, under the Homogenous Non Causality (HNC) hypothesis, we assume
that the statistic hZHncN,T follow approximately the same distribution as the standardized average
Wald statistic ZHncN,T .

Proposition 6 Under assumptions A1 and A2, for a fixed T dimension with T > 5 + 2K, the
approximated standardized statistic hZHncN,T converges in distribution:

hZHncN,T =

v
N

2×K × (T − 2K − 5)
(T −K − 3) ×

�
(T − 2K − 3)
(T − 2K − 1)W

Hnc
N,T −K

�
d−→

N→∞
N (0, 1) (25)

with WHnc
N,T = (1/N)

SN
i=1Wi,T .

The test of the HNC hypothesis is built3 as follows. For each individual of the panel, we
compute the standard Wald statisticsWi,T associated to the individual hypothesis H0,i : βi = 0
with βi ∈ RK Given these N realizations, we get a realization of the average Wald statistic

3 If one uses the standard definition of the Wald statistic with the T normalization, it is necessary to adapt
the formula (25) by substituting the quantity T − 2K − 1 by T. More precisely, if the Wald individual statistic

12



WHnc
N,T . Given the formula (25) we compute the realization of the approximated standardized

statistic hZHncN,T for the T and K values. For a large N sample, if the value of hZHncN,T is supe-
rior in absolute mean to the normal corresponding critical value for a given level of risk, the
homogeneous non causality (HNC) hypothesis is rejected.

5 Monte Carlo simulation results

In this section, we propose Monte Carlo experiments to examine the accuracy of the approxi-
mated standardized statistic hZHncN,T . The model used is:

yi,t = αi +
K[
k=1

γ
(k)
i yi,t−k +

K[
k=1

β
(k)
i xi,t−k + εi,t (26)

considered under H0, that is under the assumption of Homogenous Non Causality hypothesis
βi = 0. The others parameters of the model are calibrated as follows. The auto-regressive
parameters γ(k)i are drawn according to a uniform distribution on [−10, 10] under the constraint
that the roots of Γ (z) =

SK
k=1 γ

(k)
i zk lie outside the unit circle in order to satisfy the assumption

A3. The fixed individual effects αi, i = 1, .., N are simulated according a N (0, 1). Individual
residuals are drawn in normal distribution (assumption A1) with zero means and heterogeneous
variances σ2ε,i. The variance σ

2
ε,i are generated according a uniform distribution on [0.5, 1.5].

In the first set of experiments, we compute by Monte Carlo simulations two estimates of
the mean and the variance of the Wald statistic Wi,T under the non causality hypothesis for a
given unit i with a residual variance σ2ε,i. The explanatory variable xi,t is simulated according

a N (0, 1) distribution for each set of data. The sequence {yi,t}Tt=1 is simulated under the
HNC hypothesis βi = 0 for a particular realization of normal residuals. Given these pseudo
samples, we compute the Wald statistic Wi,T associated to the individual non causality test.
For different T sample size and lag order K, we use 50 000 replications of the Wald statistics to
compute the empirical mean and variance of Wi,T . The results of the simulated moments are
reported in table 1. We can verify that for large T sample, the simulated mean and variance
converge to their asymptotic respective values, that is K and 2K.

For different values of T and N, we compare the simulated moments of Wi,T to the exact
moments of iWi,T . These exact moments computed from (21) and (22) are reported on table 2.
As we can observe there is few differences between simulated moments of Wi,T (table 1) and
the exact moments of iWi,T (table 2). For instance, for T = 15 and K = 1, the simulated mean
is 1.21 whereas the exact mean is 1.20. The simulated variance is 3.97 and the exact one is
3.96. Even with a higher lag-order, the approximations are quite well. With K = 3 and T = 25
the simulated and exact mean (variance) are respectively 3.37 and 3.38 (10.17 and 10.31). For
larger lag-order and very short T sample (for instance T = 6 + 2K the minimum size for the
existence of second order moment), the approximation is less accurate.

Wi,T is defined as:

Wi,T =

�eθ�iR� kR �Z�iZi�−1 R�l−1Reθi� /
�eε�ieεi/T �

then the standardize average Wald statistic hZHncN,T is defined as:

hZHncN,T =

v
N

2×K × (T − 4)
(T +K − 2) ×

��
T − 2
T

�
WHnc
N,T −K

�

13



6 Fixed T and fixed N distributions

If N and T are fixed, the standardized statistic hZHncN,T and the average statistic WHnc
N,T do

not converge to standard distributions under the HNC hypothesis. Two solutions are then
possible: the first consists in using the mean Wald statistic WHnc

N,T and to compute the exact
sample critical values, denoted cN,T (α) , for the corresponding sizes N and T via stochastic
simulations. We propose the results of an example of such a simulation in table 3. As in Im,
Pesaran and Shin (2002), the second solution consists in using the approximated standardized
statistic hZHncN,T and to compute an approximation of the corresponding critical value for a fixed
N . Indeed, we can show that:

Prob
� hZHncN,T < hzN,T (α)� = Prob �WHnc

N,T < cN,T (α)
�

where hzN,T (α) is the α percent critical value of the distribution of the standardized statistic
under the HNC hypothesis. The critical value cN,T (α) of WHnc

N,T is defined as:

cN,T (α) = hzN,T (α)uN−1var �iWi,T

�
+E

�iWi,T

�
where E

�iWi,T

�
and V ar

�iWi,T

�
respectively denote the mean and the variance of the individ-

ual Wald statistic defined by equations (21) and (22). Given the result of proposition (6), we
know that the critical value hzN,T (α) corresponds to the α percent critical value of the standard
normal distribution, denoted zα if N tends to infinity whatever the size T. For a fixed N , the use
of the normal critical value zα to built the corresponding critical value cN,T (α) is not founded,
but however we can propose an approximation hcN,T (α) based on this value.

hcN,T (α) = zαuN−1var �iWi,T

�
+E

�iWi,T

�
(27)

or equivalently:

hcN,T (α) = zα × (T − 2K − 1)(T − 2K − 3) ×
v
2K

N
× (T −K − 3)
(T − 2K − 5) +

K × (T − 2K − 1)
(T − 2K − 3) (28)

On the table (4), the simulated 5% critical values cN,T (0.05) get from 50 000 replications
of the model under H0 with K = 1 are reproduced (cf. table 3). The approximated 5% critical
values hcN,T (0.05) are also reported where the corresponding values are get from the equation
(28). As we can observe, both critical values are very similar: the same result can be obtained
for larger lag-order K.

7 Conclusion

In this paper, we propose a simple Granger (1969) causality test in heterogenous panel data
models with fixed coefficients. Under the null hypothesis, there is no causal relationship for
all the units of the panel. We specify the alternative as the HENC hypothesis. There is two
subgroups of units: one with causal relationships from x to y, but not necessarily with the same
DGP, and an another subgroup where there is no causal relationships from x to y.
As in the unit root literature, our statistic of test is the average of individual Wald sta-

tistics associated to the standard Granger causality tests based on time series. We derive the
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asymptotic distribution of this statistic when T and N tend sequentially to infinity. For fixed
T sample, the semi-asymptotic distribution is characterized. In this case, individual Wald sta-
tistics do not have a standard chi-squared distribution. However, under very general setting, it
is shown that individual Wald statistics are independently distributed with finite second order
moments as soon as T > 5+2K, where K denotes the number of linear restrictions. For a fixed
T , the Lyapunov central limit theorem is sufficient to get the distribution of the standardized
average Wald statistic when N tends to infinity. The two first moments of this normal semi-
asymptotic distribution correspond to empirical mean of the corresponding theoretical moments
of the individual Wald statistics.
The issue is then to propose an evaluation of the two first moments of standard Wald

statistics for small T sample. In this paper we propose a general approximation of these
moments based on the exact moments of the ratio of quadratic forms in normal variables
derived in the Magnus (1986) theorem. For a fixed T sample, we propose two approximations
of the mean and the variance of the Wald statistic. Monte Carlo experiments show that these
formulas provide an excellent approximation to the true moments. Given these approximations,
we propose an approximated standardized average Wald statistic to test the HNC hypothesis
in short T sample. Finally, approximated critical values are proposed for finite N sample.

Our aim is now to study the size and the power of our panel Granger causality test in
several configurations. When there is at least one parameter in the dynamics of the endogenous
variable which is common to all individual, it is evident that our panel test would more powerful
than individual tests lead on individual times series. However, in more general cases the results
are no so obvious.
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Appendix

A Individual Wald statistics

The individual Wald statistic Wi,T associated to the test H0 : βi = 0, which can be expressed
as Rθi = 0, is defined as, ∀i = 1, .., N :

Wi,T =

eθ3iR3 kR (Z3iZi)−1R3l−1Reθieε3ieεi/ (T − 2K − 1)
where eθi and eεi respectively denote a convergent estimate of θi and the estimated residuals for
the cross section unit i get under H1,i : βi 9= 0. First, we can express the residual sum of squareseε3ieεi as a quadratic form defined in the true population of residual εi. For that, we introduce
the standard projection matrix Mi.

eε3ieεi = ε3i
k
IT − Zi (Z3iZi)−1 Z3i

l
εi = ε3iMiεi

where εi is the true population of residual for the unit i of the model (1). The numerator
of the Wald statistic is also defined as a quadratic form in the same normal vector εi, if we
consider the expression of eθi = θi + (Z

3
iZi)

−1
Z3iεi. Since under H0,i we have Rθi = 0, we get

Reθi = R (Z3iZi)−1 Z3iεi and consequently:
eθ3iR3 kR (Z3iZi)−1R3l−1Reθi = ε3iZ

3
i (Z

3
iZi)

−1
R3
k
R (Z3iZi)

−1
R3
l−1

R (Z3ciZci)
−1
Z3ciεi

The Wald statistic is then defined as a ratio of quadratic form defined in a normal N (0, IT )
vector hεi = εi/σε,i under assumption A1.

Wi,T

T − 2K − 1 =
ε3iΦiεi
ε3iMiεi

=
hε3iΦihεihε3iMihεi (29)

where the matrices Mi and Φi are idempotent, symmetric and consequently semi positive defi-
nite.

Φi = Zi (Z
3
iZi)

−1
R3
k
R (Z3iZi)

−1
R3
l−1

R (Z3iZi)
−1
Z3i (30)

Mi = IT − Zi (Z3iZi)−1 Z3i (31)

where Zi = [e : Yi : Xi] and R are respectively (T, 2K + 1) and (K, 2K + 1). The rank of the
symmetric idempotent matrix Φi is equal to its trace, which is equal to K since:

trace(Φi) = trace
�
Zi (Z

3
iZi)

−1
R3
k
R (Z3iZi)

−1
R3
l−1

R (Z3iZi)
−1
Z3i

�
= trace

�k
R (Z3iZi)

−1
R3
l−1

R (Z3iZi)
−1
Z3iZi (Z

3
iZi)

−1
R3
�

= trace
�k
R (Z3iZi)

−1
R3
l−1

R (Z3iZi)
−1
R3
�

= trace (IK)

The rank of the projection matrix Mi is also equal to its trace :

trace(Mi) = trace
k
IT − Zi (Z3iZi)−1 Z3i

l
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= trace (IT )− trace
k
Zi (Z

3
iZi)

−1
Z3i
l

= trace (IT )− trace
k
Z3iZi (Z

3
iZi)

−1l
= trace (IT )− trace (I2K+1)
= T − 2K − 1

B Exact moments of individual Wald iWi,T

The two noncentered moments of iWi,T are respectively defined as:

E
�iWi,T

�
= (T − 2K − 1) ×K ×

] ∞
0

(1 + 2t)−(
T−2K−1

2 ) dt

E

��iWi,T

�2�
= (T − 2K − 1)2 × �2K +K2

�× ] ∞
0

t (1 + 2t)−(
T−2K−1

2 ) dt

Let us denote for simplicity hT = (T − 2K − 1) /2. For the first order moment, we get:
E
�iWi,T

�
= 2hT ×K ×

] ∞
0

(1 + 2t)−
hT dt

= 2hT ×K ×
(1 + 2t)− hT+1
2
�
−hT + 1�

∞
0

=
2hT ×K
2
�hT − 1�

Since the quantity 2
�hT − 1� = T −2K−3 is strictly different from zero under the condition

of proposition (2), we get

E
�iWi,T

�
= K × (T − 2K − 1)

(T − 2K − 3) (32)

For the second order moment, the definition is:

E

��iWi,T

�2�
= 4 hT 2 × �2K +K2

�× ] ∞
0

t (1 + 2t)−
hT dt

By integrating by parts, this expression can be transformed as:

E

��iWi,T

�2�
= 4 hT 2×�2K +K2

�×

 t× (1 + 2t)−

hT+1
2
�
−hT + 1�

∞
0

− 1

2
�
−hT + 1� ×

] ∞
0

(1 + 2t)
− hT

dt


Under under the condition of proposition (2) we have hT > 1, then:

E

��iWi,T

�2�
=

4 hT 2 × �2K +K2
�

2
�hT − 1� ×

] ∞
0

(1 + 2t)−
hT
dt

=
4 hT 2 × �2K +K2

�
2
�hT − 1� ×

 (1 + 2t)−hT+2
2
�
−hT + 2�

∞
0

=
4 hT 2 × �2K +K2

�
2
�hT − 1� × 1

2
�hT − 2�
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After simplifications, we have :

E

��iWi,T

�2�
=
hT 2 × �2K +K2

�� hT − 1��hT − 2� = (T − 2K − 1)2 × �2K +K2
�

(T − 2K − 3) (T − 2K − 5) (33)

Under the condition T > 5 + 2K, this second order moment exists as it was previously
established in proposition (2).

Finally, we can compute the second order centered moment, V ar
�iWi,T

�
as:

V ar
�iWi,T

�
= E

��iWi,T

�2�
−E

�iWi,T

�2
=

(T − 2K − 1)2 × �2K +K2
�

(T − 2K − 3) (T − 2K − 5) −
�
K × (T − 2K − 1)
(T − 2K − 3)

�2
After simplifications, we have:

V ar
�iWi,T

�
= 2K × (T − 2K − 1)

2 × (T −K − 3)
(T − 2K − 3)2 (T − 2K − 5) (34)
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Table 1: Simulated Moments of Individual Wald Wi,T Statistics

K = 1 K = 2 K = 3 K = 4
T E(W i,T ) V(W i,T ) E(W i,T ) V(W i,T ) E(W i,T ) V(W i,T ) E(W i,T ) V(W i,T )

8 1.68 18.09 – – – – – –
9 1.52 11.02 – – – – – –
10 1.40 8.31 3.25 44.30 – – – –
11 1.32 5.82 2.93 22.86 – – – –
12 1.29 5.26 2.75 16.57 4.76 63.00 – –
13 1.25 4.64 2.63 14.55 4.41 40.92 – –
14 1.23 4.18 2.56 12.59 4.09 28.49 6.56 360.65
15 1.21 3.97 2.50 11.11 3.94 23.34 5.89 65.47
16 1.18 3.79 2.45 9.41 3.81 19.52 5.51 43.62
17 1.17 3.64 2.40 8.66 3.71 15.68 5.19 30.59
18 1.15 3.30 2.37 8.16 3.63 14.56 5.10 27.29
19 1.14 3.24 2.32 7.60 3.57 14.29 4.99 25.21
20 1.12 3.02 2.29 7.40 3.52 13.30 4.88 21.69
25 1.09 2.81 2.23 6.19 3.37 10.17 4.58 15.59
30 1.08 2.69 2.16 5.48 3.33 9.43 4.43 12.82
40 1.06 2.39 2.12 5.11 3.23 7.71 4.27 11.16
45 1.05 2.42 2.12 4.95 3.16 7.73 4.22 10.37
50 1.03 2.31 2.08 4.71 3.17 7.58 4.22 10.28
100 1.03 2.17 2.02 4.27 3.07 6.93 4.08 9.12
500 1.00 2.05 1.99 4.42 3.00 5.99 4.02 8.16
1000 1.00 2.00 1.99 3.95 3.00 6.16 4.01 8.53
∞ 1.00 2.00 2.00 4.00 3.00 6.00 4.00 8.00

Notes: The auto-regressive parameters γ(k)i are drawn according to a uniform
distribution on [−10, 10] under the constraint that the roots of Γ (z) =SK

k=1 γ
(k)
i zk

lie outside the unit circle. The fixed individual effects αi, i = 1, .., N are simulated
according a N (0, 1) and the exogenous variables xi,t used to estimate the model
under H1 are simulated in a N (0, 1) distribution. The empirical moments of the
Wald statistic Wi,T are evaluated under the null HNC hypothesis.
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Table 2: Exact Moments of the Statistic iWi,T

K = 1 K = 2 K = 3 K = 4
T E(W i,T ) V(W i,T ) E(W i,T ) V(W i,T ) E(W i,T ) V(W i,T ) E(W i,T ) V(W i,T )

8 1.67 22.22 – – – – – –
9 1.50 11.25 – – – – – –
10 1.40 7.84 3.33 55.56 – – – –
11 1.33 6.22 3.00 27.00 – – – –
12 1.29 5.29 2.80 18.29 5.00 100.00 – –
13 1.25 4.69 2.67 14.22 4.50 47.25 – –
14 1.22 4.27 2.57 11.90 4.20 31.36 6.67 155.56
15 1.20 3.96 2.50 10.42 4.00 24.00 6.00 72.00
16 1.18 3.72 2.44 9.39 3.86 19.84 5.60 47.04
17 1.17 3.54 2.40 8.64 3.75 17.19 5.33 35.56
18 1.15 3.39 2.36 8.07 3.67 15.37 5.14 29.09
19 1.14 3.27 2.33 7.62 3.60 14.04 5.00 25.00
20 1.13 3.16 2.31 7.26 3.55 13.04 4.89 22.19
25 1.10 2.82 2.22 6.17 3.38 10.31 4.57 15.67
30 1.08 2.64 2.17 5.63 3.29 9.09 4.42 13.22
40 1.06 2.44 2.12 5.08 3.19 7.97 4.28 11.17
45 1.05 2.38 2.11 4.92 3.17 7.67 4.24 10.65
50 1.04 2.33 2.09 4.81 3.15 7.45 4.21 10.28
100 1.02 2.15 2.04 4.36 3.07 6.62 4.09 8.94
500 1.00 2.03 2.01 4.07 3.01 6.11 4.02 8.16
1000 1.00 2.01 2.00 4.03 3.01 6.05 4.01 8.08
∞ 1.00 2.00 2.00 4.00 3.00 6.00 4.00 8.00

Notes: The exact moments of statistic iWi,T for different values of T and K are
computed according equations (21) and (22) of proposition 5.
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Table 3: Exact Critical Values for WHnc
N,T with a lag order K = 1.

N\T 10 15 20 25 30 40 50 70 100

1% Critical Values

5 5.98 4.30 3.86 3.62 3.54 3.37 3.28 3.24 3.18
10 4.54 3.27 2.88 2.77 2.63 2.55 2.51 2.44 2.40
15 3.80 2.78 2.52 2.41 2.31 2.25 2.21 2.14 2.10
20 3.37 2.56 2.31 2.19 2.12 2.04 2.03 1.98 1.94
25 3.21 2.37 2.15 2.06 1.99 1.93 1.90 1.86 1.84
50 2.62 1.99 1.82 1.73 1.71 1.65 1.62 1.59 1.57
100 2.21 1.72 1.59 1.53 1.50 1.46 1.44 1.41 1.39

5% Critical Values

5 3.54 2.87 2.66 2.53 2.47 2.39 2.36 2.33 2.28
10 2.97 2.38 2.19 2.10 2.04 1.98 1.95 1.91 1.88
15 2.68 2.15 1.99 1.91 1.85 1.80 1.77 1.74 1.71
20 2.49 2.01 1.86 1.79 1.75 1.69 1.67 1.64 1.62
25 2.40 1.92 1.78 1.71 1.66 1.62 1.60 1.57 1.55
50 2.10 1.70 1.57 1.52 1.49 1.45 1.42 1.40 1.39
100 1.89 1.54 1.44 1.39 1.36 1.33 1.31 1.29 1.27

10% Critical Values

5 2.74 2.30 2.16 2.08 2.02 1.98 1.95 1.92 1.90
10 2.43 2.01 1.87 1.80 1.76 1.71 1.69 1.66 1.64
15 2.26 1.87 1.74 1.68 1.64 1.60 1.57 1.55 1.52
20 2.15 1.78 1.66 1.60 1.57 1.52 1.50 1.48 1.46
25 2.08 1.72 1.60 1.55 1.51 1.47 1.45 1.42 1.41
50 1.89 1.57 1.46 1.41 1.38 1.35 1.33 1.31 1.30
100 1.75 1.46 1.37 1.32 1.29 1.26 1.25 1.22 1.21

Notes: The exact critical values for the average statisticWHnc
N,T are computed via

stochastic simulations with 50 000 replications. The individual Wald statistics Wi,T

are built under the HNC hypothesis, where the auto-regressive parameters γ(k)i are
drawn according to a uniform distribution on [−10, 10] under the constraint that
the roots of Γ (z) =

SK
k=1 γ

(k)
i zk lie outside the unit circle. The fixed individual

effects αi, i = 1, .., N are simulated according a N (0, 1) and the exogenous variables
xi,t used to estimate the model under H1 are simulated in a N (0, 1) distribution.
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Table 4: Comparison of exact and approximated critical values with a lag-order K = 1.

Simulated 5% Critical Values cN,T (0.05)

N\T 10 15 20 25 30 40 50 100
5 3.54 2.87 2.66 2.53 2.47 2.39 2.36 2.28
10 2.97 2.38 2.19 2.10 2.04 1.98 1.95 1.88
15 2.68 2.15 1.99 1.91 1.85 1.80 1.77 1.71
20 2.49 2.01 1.86 1.79 1.75 1.69 1.67 1.62
25 2.40 1.92 1.78 1.71 1.66 1.62 1.60 1.55

Approximated 5% Critical Values hcN,T (0.05)
N\T 10 15 20 25 30 40 50 100
5 3.46 2.66 2.44 2.34 2.27 2.21 2.17 2.10
10 2.86 2.24 2.06 1.97 1.92 1.87 1.84 1.78
15 2.59 2.05 1.89 1.81 1.77 1.72 1.69 1.64
20 2.43 1.93 1.79 1.72 1.68 1.63 1.61 1.56
25 2.32 1.85 1.72 1.65 1.61 1.57 1.55 1.50

Notes: The exact critical values for the average statistic WHnc
N,T are computed

from equation (28). The simulated critical values are taken from table (3).
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