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Abstract

This paper explores the forecasting abilities of Markov-Switching models. Although MS models

generally display a superior in-sample fit relative to linear models, the gain in prediction remains

small. We confirm this result using simulated data for a wide range of specifications. In order

to explain this poor performance, we use a forecasting error decomposition. We identify four

components and derive their analytical expressions in different MS specifications. The relative

contribution of each source is assessed through Monte Carlo simulations. We find that the main

source of error is due to the misclassification of future regimes.
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1 Introduction

Since the seminal paper of Hamilton (1989), there is a great deal of interest in modelling

time series that are subject to structural changes using Markov-Switching (MS). The cyclical

behaviour of many economic variables has been of particular interest.

Several recent studies use MS models to predict economic series (see for example Clements

and Krolzig, 1998, Krolzig, 2004). However, the results are disappointing (see Clements et al.,

2004, for a review of the literature in this area). Although MS models give a better in-sample

fit relative to linear models, they are usually outperformed by linear models in out-of-sample

∗marie.bessec@dauphine.fr, EURIsCO, University of Paris Dauphine.
†bouabdal@univ-paris1.fr, EUREQua, University of Paris Panthéon-Sorbonne. We would like to thank F. Bec,

T.E. Clark, G. Guerrero and P.Y. Hénin for their helpful comments and suggestions. All remaining errors are
ours.

1



forecasting exercises. Dacco and Satchell (1999) present a theoretical explanation for this bad

performance in a fairly simple specification. They consider a model with no autoregressive

terms and with a switch on the intercept. They show that only a small misclassification of

future regimes, due to the failure to forecast the regime indicator, dramatically deteriorates the

predictions of this model.

The aim of this paper is to assess the robustness of this result on a wide range of specifications.

To this end, we perform a Monte Carlo study. First, the quality of the linear and non-linear

predictions are compared. Second, the forecasting error is decomposed as suggested in Krolzig

(2004). The analytical expressions of the four different sources of error are derived and their

relative contribution is assessed using simulated data.

We focus on specifications with only a shift in the deterministic part where it is possible to

derive analytically optimal predictors (Krolzig, 2004). We consider a wide range of specifications

for these models. Representations with a switching intercept (and variance) or a switching mean

(and variance) are studied using different sets of parameters1. In particular, we examine the

impact of changes in the persistence and error-variance parameters. For all specifications, we

show that the failure to predict the future regimes explains the major part of the total prediction

error of the MS models.

The remainder of the paper proceeds as follows. Section 2 introduces the four subclasses

of the models under study and reports the expression of the optimal predictor in these specifi-

cations. Section 3 describes the simulation procedure and compares the performances of linear

and non-linear models in forecasting exercises. Section 4 presents the error decomposition and

discusses the simulation results that are based on it. Section 5 gives our concluding remarks.

2 Prediction in MS autoregressive models

Krolzig (2004) shows that analytical expressions for the optimal predictors can be derived in

MS-VAR models only if the autoregressive parameters are time—invariant. For this reason,

we have chosen to focus in the following sections on four important subclasses of MS-VAR

models: specifications with switches only on the intercept (MSI), on the intercept and the

variance (MSIH), on the mean (MSM) and on the mean and the variance (MSMH). As an

illustrative example, we use the special case of univariate specifications with two regimes and

one autoregressive term2.

1These specifications are widely used to capture the dynamics of real variables (Hamilton, 1989, Krolzig and
Toro, 2002, Clements and Krolzig, 2003) and financial series (Cecchetti et al., 1990, Engel and Hamilton, 1990,
Engel, 1994, Garcia and Perron, 1996, Bidarkota, 2001).

2The general case of MS(m)-VAR(p) is presented in detail in the Appendix A.
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2.1 The MSI(H) Model

Let yt be the time series of interest. Suppose that yt follows a first autoregressive process

with a switch on the intercept (MSI). These switches occur between two states and are governed

by an unobservable variable St which follows a first-order Markov process and takes the value 1

or 2.

yt = νst + αyt−1 + ut ut ∼ NID(0, σ) (1)

Following Krolzig (2004), we can define an unobservable 2 × 1 state vector ξt consisting of
two binary indicator variables as ξt = [I(st = 1), I(st = 2)]

0 and F the transition matrix of the

Markov process:

F =

µ
p11 1− p22

1− p11 p22

¶
The dynamics of the centered state vector of being in state one, ζt = ξ1t − ξ1, is given by:

ζt+1 = (p11 + p22 − 1)ζt + vt+1 (2)

where ξ1 is the first component of the 2×1 vector of ergodic probabilities ξ = [P (st = 1), P (st =
2)]0 and vt is a martingale difference sequence.

The state space representation of this MSI(2)-AR(1) process can thus be defined by:½
yt − µy = (ν1 − ν2)ζt + α(yt−1 − µy) + ut

ζt+1 = ρζt + vt+1
(3)

with ρ = p11 + p22 − 1 and µy = (1− α)−1(ν1, ν2) ξ.

It follows that the optimal predictor ŷt+h|t is given by:

ŷt+h|t − µy = αh(yt − µy) + (ν1 − ν2)

Ã
hX
i=1

αh−iρi
!
ζ̂t|t (4)

The second term in (4) represents the contribution of the non-linear part. The weight of this

term increases with the shift on the intercept |ν1 − ν2|, the persistence parameters α and ρ, and
diminishes with the horizon of prediction h. In the absence of change in the intercept (ν1 = ν2),

this equation reduces to the linear optimal predictor αh(yt − µy).

Note that this analytical expression also applies for a MSIH(2)-AR(1) process where the

variance of ut depends on the state ut/st ∼ NID(0, σst).

2.2 The MSM(H) Model

Let us now consider an AR(1) process with a switching mean as motivated by Hamilton

(1989). The dynamics of a MSM(2)-AR(1) model is described by the following equation:

yt = µst + α(yt−1 − µst−1) + ut ut ∼ NID(0, σ) (5)
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Using the same notations, the state space representation of this model is given by:
yt − µy = (µ1 − µ2)ζt + zt

zt+1 = αzt + ut+1
ζt+1 = ρζt + vt+1

(6)

with zt the autoregressive component of the process zt = yt − µst and µy = (µ1, µ2) ξ.

It is easy to show in this representation that the optimal predictor ŷt+h|t is obtained as

follows:

ŷt+h|t − µy = αh(yt − µy) + (µ1 − µ2)
³
ρh − αh

´
ζ̂t|t (7)

As above, the MSM predictor consists of two parts: the linear optimal predictor and a second

part which takes into account the shifts in the mean. The weight of the last one depends on

the magnitude of the shift |µ1 − µ2| and on the persistence of the regimes ρ relative to the
persistence of the process α.

Again, this expression is still valid when we allow for a dependence of the variance on the

realized regime st (MSMH(2)-AR(1) model).

3 Forecasting failure of MS models

Many studies show the poor performance of non-linear models against the linear counterpart

for prediction. We explore the robustness of this result for a wide range of DGPs (MSI, MSIH,

MSM and MSMH) and different sets of parameters.

To assess the relative performance of the two competing alternatives for forecasting pur-

poses, we perform Monte Carlo simulations. First, data from one of the four MS processes are

generated. Then, the linear and non-linear alternatives are estimated3. The lag order of the

linear autoregressive model is selected using the BIC criterion with a maximum lag length of

3. Finally, the predictions are computed into the two models at different horizons h = 1, . . . , 8.

The predictions are made in an out-of sample context with a rolling forecast origin and the es-

timated parameters are recalibrated at each iteration. This procedure is replicated 2000 times.

We consider samples with 200 observations4 and the forecast origin Tf rolls from 160 to 200−h

for each horizon h. This exercise is repeated for different values of the transition probability

p22 ∈ {0.70; 0.85} and of the variance parameter σ ∈ {0.3; 0.5}. The other parameters are chosen
close to the estimates of the Hamilton model of the US GNP growth rate (1989): µ1 = ν1 = 1 ;

µ2 = ν2 = −1 ; α = 0.2 ; p11 = 0.95.
3We make use of Warne’s code available on http://texlips.hypermart.net/warne/code.html to estimate the

MSI, MSM and MSIH models.
4We remove the first 100 observations of the 300 observations initially generated, in order to avoid the possible

effects of the initial conditions.
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Table 1: Comparison of models with MAE

MSI MSIH MSM MSMH
σ 0.3 0.5 0.3, 0.5 0.3 0.5 0.3, 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.92 0.88 0.94 0.89 0.92 0.88 0.95 0.91 0.96 0.91 0.95 0.91
2 0.96 0.93 0.97 0.92 0.96 0.92 0.97 0.93 0.98 0.92 0.97 0.93
3 0.98 0.96 0.99 0.94 0.98 0.95 0.99 0.95 0.99 0.95 0.99 0.95
4 1 0.98 1 0.96 1 0.97 1 0.96 1 0.96 1 0.96
5 1 0.99 1 0.98 1 0.98 1 0.98 1 0.97 1 0.98
6 1 0.99 1 0.99 1 0.99 1 0.98 1 0.98 1 0.98
7 1 1 1 0.99 1 0.99 1 0.99 1 0.99 1 0.99
8 1 1 1 1 1 1 1 0.99 1 0.99 1 0.99

Table 2: Comparison of models with RMSE

MSI MSIH MSM MSMH
σ 0.3 0.5 0.3, 0.5 0.3 0.5 0.3, 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.96 0.94 0.96 0.93 0.96 0.93 0.98 0.95 0.98 0.95 0.98 0.95
2 0.98 0.96 0.98 0.95 0.98 0.96 0.99 0.96 0.99 0.96 0.99 0.97
3 0.99 0.98 0.99 0.97 0.99 0.98 0.99 0.98 0.99 0.97 0.99 0.98
4 1 0.99 1 0.98 1 0.99 1 0.98 1 0.98 1 0.98
5 1 0.99 1 0.99 1 0.99 1 0.99 1 0.99 1 0.99
6 1 1 1 0.99 1 1 1 0.99 1 0.99 1 0.99
7 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1

The results are summarized in Tables 1 and 2. We report the relative Mean Absolute

Error (MAE) and Root Mean Square Error (RMSE) of the MS predictor to the linear one5. A

result inferior to one indicates that the Markov Switching model performs better than the linear

alternative and vice versa. Several findings emerge from these tables. First, the gain of the

non-linear alternative relative to the linear one is rather small, although the data are generated

from a MS model. Indeed, the gain never exceeds 12% and shrinks to zero for large horizons (as

shown above). Such a result is consistent with findings obtained in previous studies (Clements

and Krolzig, 1998, Krolzig, 2004). Second, the comparison of the three DGPs shows that the

MSIH displays an enhancement of no more than 12% (with the MAE criteria) at short horizons.

At longer horizons, the MSI or MSM specifications provide the best relative performance with

a maximum gain of 6% (using the MAE criteria). Third, for each DGP, increasing the variance

parameter generally leads to a slight deterioration of the MS prediction. On the contrary, an

5We have only reported the results for univariate specifications. However, our findings are still valid in the
bivariate case. The corresponding results are given in Appendix C.
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increase in the persistence of the regimes improves the relative performance of the non-linear

specification up to 6%. This increase also slows down the convergence of the non-linear predictor

with the linear one as predicted by equations (4) and (7).

4 Forecasting error decomposition

To explain such a poor performance of the MS specifications, we decompose the forecast error

of the non-linear models into four components as suggested by Krolzig (2004).

The prediction error êt+h|t = yt+h − E[yt+h /Ωt; bΘ] associated with the optimal predictorbyt+h|t can be written as follows:
êt+h|t = (yt+h −E[yt+h / st+h,Ωt;Θ0])

+ (E[yt+h / st+h,Ωt;Θ0]−E[yt+h / st,Ωt;Θ0])

+ (E[yt+h / st,Ωt;Θ0]−E[yt+h /Ωt;Θ0])

+ (E[yt+h /Ωt;Θ0]−E[yt+h /Ωt; bΘ])
(8)

Θ0 is the set of actual parameters, Θ̂ the estimated set of parameters and Ωt the information

set available at time t. The first component ê(1)t+h|t reflects the error we get if we know the exact

set of parameters and the dynamics of the Hidden Markov process st+h = {st+h, st+h−1,...,st−1}.
This source of uncertainty reduces to the unpredictable Gaussian components (us)t<s≤t+h. The

second term ê
(2)
t+h|t measures the contribution of the regime prediction error, i.e. the impact of

the misclassification of future values of the Markov process. The third one ê(3)t+h|t measures the

error due to the filter uncertainty, that is the error induced by the filtering process of the past

and current states involved in the prediction. These three components are evaluated conditional

to the true parameters Θ0. The last component ê
(4)
t+h|t stands for the parameter uncertainty due

to the estimation procedure6.

We apply this decomposition in the Monte Carlo design described above. For each DGP

analyzed in Section 3, the relative weights of each component in absolute value for the eight

horizons are depicted in Figure 1. Several results are worth commenting on. First, the third

component ê(3)t+h|t is found to be insignificant in all specifications and at all horizons. Second,

the weight of the estimation error ê(4)t+h|t remains stable and small over all specifications (10-

15%). Hence, the two major sources of forecasting error are due to the Gaussian terms and the

misclassification of future states. The relative part of these two terms varies across horizons.

The first component is the most important at the first horizon (h = 1). For larger h, the second

component ê(2)
t+h|t dominates with a weight increasing with the horizon and ranging from 40% to

65%. Such a contribution is positively related to the persistence of the regime. On the contrary,

6See the Appendix B for the derivation of each component in the MSI(m)-VAR(p) and MSM(m)-VAR(p)
specifications.
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it tends to decrease with the volatility. This last result is intuitive: a larger variance gives a

heavier weight to the unpredictable component, ê(1)t+h|t.

5 Conclusion

In this paper, we have examined the performances of Markov-Switching models in predicting

economic variables that are subject to regime switching.

A simulations-based study has shown that the improvement in the forecast performance is

rather small compared to the linear specification and occurs only at short horizons. Checking

the relevance of this result for different parameter settings has shown the robustness of this

finding. Indeed, changing the persistence parameters and the variability of the process does not

significantly affect the forecasting performance of the MS models relative to the linear one.

To explain this result, we have performed a forecasting error decomposition exercise. Four

different sources of error have been identified and their relative contribution has been assessed

using simulated data. It turns out that the misclassification of future-state realizations explains

the failure of MS models in prediction exercises with an average contribution of 60% of the total

error.

This result suggests that the prediction enhancements made in the MS models require im-

proving the prediction of the states. This will be the subject of future research.
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APPENDIX

A Optimal predictors

A.1 MSI-VAR model

If the variance and autoregressive parameters of a MS-VAR model are regime-invariant

Aj,st = Aj for j ∈ {1, ..., p}, there exists a linear state space representation. For a MSIH(m)-
VAR(p) model, this representation can be written as follows:½

yt − µy =Mζt +A1(yt−1 − µy) + ...+Ap(yt−p − µy) + ut
ζt+1 = Fζt + vt+1

where µy = (IK − A1 − . . . − Ap)
−1(ν1, · · · , νm) ξ is the unconditional mean of yt, M =

(ν1 − νm, · · · , νm−1− νm) and F =

 p1,1 − pm,1 · · · pm−1,1 − pm,1
...

...
p1,m−1 − pm,m−1 · · · pm−1,m−1 − pm,m−1

 is a (m−

1)× (m− 1) matrix.
Let us consider the VAR(1) representation of the VAR(p) process. Denoting xt the Kp× 1

vector defined as xt =
¡
xt xt−1 · · · xt−p+1

¢0
where xt is a K × 1 vector, the state space

representation can be rewritten as:½
yt − µ̄ = Hζt +A(yt−1 − µ̄) + ut

ζt+1 = Fζt + vt+1

whereA =


A1 ... Ap−1 Ap

IK 0 · · · 0
. . . . . .

...
0 IK 0

is aKp×Kpmatrix, µ̄ = E(yt) andH =
¡ M 0 · · · 0

¢0
is

a Kp× (m− 1) matrix.
It follows that the optimal predictor ŷt+h|t is given by:

ŷt+h|t − µy =

Ã
hX
i=1

JK,KpA
h−iHF i

!
ζ̂t|t + JK,KpA

h(yt − µ̄)

with Jn,np = (In 0n · · · 0n) a n× np matrix.

A.2 MSM-VAR model

The state space representation of a MSM(m)-VAR(p) model is given by:
yt − µy =Mζt + zt
zt+1 = Azt + ut+1
ζt+1 = Fζt + vt+1

where µy = (µ1, · · · , µm) ξ is the unconditional mean of yt,M = (µ1−µm, · · · , µm−1−µm) and
zt = yt − µy −Mζt.
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In a MSM(m)-VAR(p) process, the optimal predictor ŷt+h|t is given by:

ŷt+h|t − µy = JK,KpA
h(yt − µ̄)+

³
MFhJ(m−1),(m−1)p − JK,KpA

hM
´
ζ̂
t|t

whereM = Ip ⊗M .

B Error Decomposition

B.1 MSI-VAR model

In a MSI(m)-VAR(p) model, the expression of the optimal predictor for the estimated set

of parameters is given by:

ŷt+h|t = µ̂y +

Ã
hX
i=1

JK,KpÂ
h−iĤF̂ i

!
ζ̂t|t + JK,KpÂ

h
¡
yt − b̄µ¢

where θ̂ denotes the estimate of the parameter θ.

The total prediction error is given by:

êt+h|t = yt+h −E
³
yt+h

¯̄̄
Ωt; Θ̂

´
= yt+h − ŷt+h|t

This error can be decomposed into four components:

êt+h|t = ê1t+h|t + ê2t+h|t + ê3t+h|t + ê4t+h|t

• First component (measures the effect of the Gaussian error):

ê1t+h|t = yt+h −E (yt+h |st+h, . . . , st,Ωt;Θ0 ) = yt+h − ŷ1t+h|t

with ŷ1t+h|t = µy +
hP
i=1

JK,KpA
h−iHζt+i + JK,KpA

h
¡
yt − µ̄

¢
.

• Second component (measures the effect of future regime misclassifications):

ê2t+h|t = E (yt+h |st+h, . . . , st,Ωt;Θ0 )−E (yt+h |st,Ωt;Θ0 ) = ŷ1t+h|t − ŷ2t+h|t

with ŷ2t+h|t = µy +

µ
hP
i=1

JK,KpA
h−iHF i

¶
ζt + JK,KpA

h
¡
yt − µ̄

¢
.

We then deduce:

ê2t+h|t =
hX
i=1

JK,KpA
h−iH ¡ζt+i − F iζt

¢
This component is proportional to the error made in predicting the future states

¡
ζt+i − F iζt

¢
,

i = 1, . . . , h.
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• Third component (due to the error in detecting the current regime):

ê3t+h|t = E (yt+h |st,Ωt;Θ0 )−E (yt+h |Ωt;Θ0 ) = ŷ2t+h|t − ŷ3t+h|t

with ŷ3t+h|t = µy +

µ
hP
i=1

JK,KpA
h−iHF i

¶
ζ̂t/t + JK,KpA

h
¡
yt − µ̄

¢
.

It follows that:

ê3t+h|t =
hX
i=1

JK,KpA
h−iHF i

³
ζt − ζ̂t/t

´
ê3t+h|t is related to the filtering error

³
ζt − ζ̂t/t

´
.

• Fourth component (error due to the estimation process):

ê4t+h|t = E (yt+h |Ωt;Θ0 )−E
³
yt+h

¯̄̄
Ωt; Θ̂

´
= ŷ3t+h|t − ŷt+h|t

B.2 MSM-VAR model

Now, the optimal predictor ŷt+h|t is given by:

ŷt+h|t = µ̂y +
³
M̂F̂h

J(m−1),(m−1)p − JK,KpÂ
hM̂

´
ζ̂
t|t + JK,KpÂ

h
¡
yt − b̄µ¢

In the same way, we can decompose the forecast error into four components:

• First component (the Gaussian error):

ê1t+h|t = yt+h −E
³
yt+h

¯̄̄
st+h, . . . , st,Ωt;Θ0

´
= yt+h − ŷ1t+h|t

with ŷ1t+h|t = µy +MJ(m−1),(m−1)pζt+h − JK,KpA
hMζt + JK,KpA

h
¡
yt − µ̄

¢
and st =¡

st st−1 · · · st−p+1
¢0
.

• Second component (misclassification of future regimes):

ê2t+h|t = E
³
yt+h

¯̄̄
st+h, . . . , st,Ωt;Θ0

´
−E

¡
yt+h

¯̄
st,Ωt;Θ0

¢
= ŷ1t+h|t − ŷ2t+h|t

with ŷ2t+h|t = µy + (MFhJ(m−1),(m−1)p − JK,KpA
hM)ζt + JK,KpA

h
¡
yt − µ̄

¢
.

It follows that:

ê2t+h|t =M
³
ζt+h − Fhζt

´
• Third component (the filtering error):

ê3t+h|t = E
¡
yt+h

¯̄
st,Ωt;Θ0

¢−E (yt+h |Ωt;Θ0 ) = ŷ2t+h|t − ŷ3t+h|t

with ŷ3t+h|t = µy + (MFhJ(m−1),(m−1)p − JK,KpA
hM)ζ̂t/t + JK,KpA

h
¡
yt − µ̄

¢
.
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We then deduce:

ê3t+h|t = (MFhJ(m−1),(m−1)p − JK,KpA
hM) (ζt − ζ̂t/t)

Note that this error is now dependent on the filtering of the current as well as of the p-1

past regimes.

• Fourth component (due to the estimation error):

ê4t+h|t = E (yt+h |Ωt;Θ0 )−E
³
yt+h

¯̄̄
Ωt; Θ̂

´
= ŷ3t+h|t − ŷt+h|t

C Results for bivariate MS-processes

This appendix assesses the robustness of our results for bivariate MS-processes. To this aim, we

simulate data fromMS-VARmodels with a switch on the intercept or on the mean and eventually

on the variance parameters7. The transition probabilities are chosen as in the univariate design:

p11 = 0.95 and p22 = {0.70, 0.85}. The other parameters of the equation i = {1, 2} are given by:
µi1 = νi1 = 1 ; µ

i
2 = νi2 = −1 and A =

µ
0.2 0.1
0.1 0.2

¶
. At last, the errors of the two equations are

supposed to be uncorrelated and of equal variance.

We report in the following the results obtained in the first equation of the VAR. The results

for the second one - very similar - are not given here.

The comparison exercise shows the same qualitative results as those obtained in the uni-

variate specifications. The predictive gain of the MS specification relative to the linear one is

small and non significant for horizons larger than one. The Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) of the MS predictor relative to the linear one obtained in the

first equation are reported in Tables 3 and 4. A result inferior to one still indicates that the

Markov-Switching model performs better than the linear alternative and vice versa. We note

that the gain in prediction is a slightly smaller than in the univariate case and converges more

quickly to zero.

The explanation for this failure is the same as in the linear framework. Figure 2 gives the

decomposition of the error prediction for the first variable of the VAR. Again the two major

sources of forecasting error are due to the Gaussian terms and the misclassification of future

states. The first component is the most important at the first horizon (h = 1). For larger h, the

second component dominates with a weight increasing with the horizon and ranging from 40%

to 65%.

7Given the computional burden, we do not consider the bivariate MSMH specifications.
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Table 3: Comparison of models with MAE

MSI MSIH MSM
σ 0.3 0.5 0.3, 0.5 0.3 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.94 0.91 0.95 0.92 0.94 0.91 0.97 0.95 0.98 0.95
2 0.97 0.96 0.97 0.94 0.97 0.94 0.99 0.96 0.99 0.95
3 0.99 0.99 0.99 0.96 0.99 0.98 0.99 0.97 1 0.96
4 1 1 0.99 0.98 0.99 1 1 0.98 1 0.97
5 1 1.01 1 0.99 1 1.01 1 0.99 1 0.98
6 1 1.01 1 1 1 1.01 1 0.99 1 0.99
7 1 1.01 1 1 1 1.01 1 0.99 1 0.99
8 1 1.01 1 1 1 1.01 1 0.99 1 0.99

Table 4: Comparison of models with RMSE

MSI MSIH MSM
σ 0.3 0.5 0.3, 0.5 0.3 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.97 0.95 0.97 0.95 0.97 0.95 0.99 0.98 0.99 0.97
2 0.98 0.97 0.98 0.96 0.98 0.97 0.99 0.98 0.99 0.97
3 0.99 0.98 0.99 0.98 0.99 0.98 1 0.99 1 0.98
4 0.99 0.99 0.99 0.99 0.99 0.99 1 0.99 1 0.99
5 0.99 0.99 1 0.99 0.99 0.99 1 1 1 0.99
6 0.99 0.99 1 1 0.99 0.99 1 1 1 0.99
7 1 0.99 1 1 1 0.99 1 1 1 1
8 1 0.99 1 1 1 0.99 1 1 1 1

13



Figure 1: Error decomposition results
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Figure 2: Error decomposition results in the bivariate case (first equation)

MSI, sig=0.3 and p22=0.70

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

horizon

%
 o

f t
ot

al
 e

rr
or

MSI, sig=0.3 and p22=0.85

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

horizon

%
 o

f t
ot

al
 e

rr
or

MSI, sig=0.5 and p22=0.70

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

horizon

%
 o

f t
ot

al
 e

rr
or

MSI, sig=0.5 and p22=0.85

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

horizon

%
 o

f t
ot

al
 e

rr
or

MSIH, p22=0.70

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

horizon

%
 o

f t
ot

al
 e

rr
or

MSIH, p22=0.85

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

horizon

%
 o

f t
ot

al
 e

rr
or

MSM, sig=0.3 and p22=0.70

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

horizon

%
 o

f t
ot

al
 e

rr
or

MSM, sig=0.3 and p22=0.85

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

horizon

%
 o

f t
ot

al
 e

rr
or

MSM, sig=0.5 and p22=0.70

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

horizon

%
 o

f t
ot

al
 e

rr
or

MSM, sig=0.5 and p22=0.85

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

horizon

%
 o

f t
ot

al
 e

rr
or

15


